1.	Which of the following structures is most stable, with minimum potential energy?					
	H H H H A	Me H H Me B	Me H H C	Me H H Me D		

- 2. How many structural isomers one can give for a compound with the formula of C₂H₂F₄?
 - A. One;
- **B**. Two;
- C. Three;
- **D**. Four
- 3. Which free radical is most stable?

 Me A B C D
- S. Which statement is correct for the following two compounds?

 OH

 OH

 II

 The hydroxyl in both I and II is oriented in equatorial position, in its most stable conformation.
 The hydroxyl in both I and II is oriented in axial position, in its most stable conformation.
 The hydroxyl in I will be axial, while it is equatorial in II, in its most stable conformation.
 The hydroxyl in I will be equatorial, while it is axial in II, in its most stable conformation.
- 6. How many stereoisomers are possible for 2,4-hexadiene?

 A. Zero; B. Two; C. Three; D. Four
- 7. Which order of reactivity is appropriate for the following compounds when treated with aqueous sodium hydroxide?

 A

 CI > CI > CI

В	~ CI > CI > CI
С	+c1 > > c1
D	

Which of the following compounds will have highest boiling point?				
CH ₃ CH ₂ CH ₂ CH ₂ OCH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CI				
Α	В			
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂			
С	D			
	CH ₃ CH ₂ CH ₂ CH ₂ OCH ₃	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CI A B		

9.	What product i	s formed when the	following halohy	drin is treated with NaC	DH?
	H H				
	ОН				
	H				
	CI				
		OH			
	A	В	С	D	

10.	Which position is most reactive for electrophilic substitution of 2-hydroxy naphthalene?
	A
	→
	HO.
	C A B

11.	Which is the most stable condition for the following conversion?	
	Et ?	
A	H ₂ , 10% Pd-C (Catal.)	
В	H ₂ , 5% Rh-Alumina (Catal.)	
C	LiAlH ₄ , dry Et ₂ O	
D	H ₂ , Pd on BaSO ₄ , 2% quinoline (Catal.)	

12.	Which of the following compounds will NOT undergo decarboxylation?					
	СООН	СООН	ноос с	СООН		

- Which of the following compounds will NOT produce a monocyclic compound on ozonolysis reaction?

 B
 C
 D

17.	What main product is obtained when anthracene is treated with liquid bromine in CCl ₄ at low temperature?						
	Br	Br Br B	Br H C	D Br			

18.	What major product is obtained when phenanthrene is subjected to oxidation with K ₂ Cr ₂ O ₇ in dilute sulfuric acid?
	C D

19.	Suggest appropriate reagent and condition for the following conversion.
	NO_2 NH_2 NO_2
A	Sn (metal) and HCl
В	Zn-Hg, HCl
C	H ₂ , Pd-C (Catal.)
D	$(NH_4)_2S$

20.	Some molecules show phosphorescence due to	
A	Singlet to triplet crossing	
В	Singlet to ground state transition	
C	Triplet to ground state transition	
D	Ground state to triplet excitation	

21.	Which of the following compounds can exist in two geometrical isomeric forms?					
	Me	Me CI	Me CI	Me IV	°CI	
	A. I and II	B. II and III	C. I at	nd IV	D. III and IV	

22.	Which of the following compounds are examples of heteroannular dienes?					
	1	<i>II</i>	III	IV		
	A, I and II;	B , Only II;	C, I, III a	ind IV;	D , II and IV	

23.	Which carbohydrate is main component of "Table Sugar"?					
	A. Sucrose	B. Maltose	C. Glucose	D . Lactose		

24.	The Kiliani-Fischer synthesis involves
A	Lengthening of chain length of carbohydrate.
В	Shortening of chain length of carbohydrate.
C	The number of carbons remains unchanged.
D	The number of carbons remains unchanged, but involves oxidation.

25.	Which of the following four isomers will react faster, when heated with NaOH to give 1,2-							
	dimethylcyclohex-1-6	dimethylcyclohex-1-ene?						
	Me Me Me Me Me Br	H Me Me O Br	Me NMe ₃ H Me Br	H NMe NMe Me Br				

26.	What is the best way to distinguish methanol and ethanol in the laboratory?				
A	By Iodoform Test				
В	By Lucas Test				
C	By Tollen's Reagent Test				
D	Hinsberg Test				

28.	In the following reaction, what change is observed in the IR stretching frequency of carbonyl group?				
	COOH COCI → COCI				
A	The stretching of cyclopentanecarboxylic acid (1790 cm ⁻¹) shifts to 1705 cm ⁻¹ in its acid chloride.				
В	The stretching of cyclopentanecarboxylic acid (1715 cm ⁻¹) shifts to 1690 cm ⁻¹ in its acid chloride.				
С	The stretching of cyclopentanecarboxylic acid (1735 cm ⁻¹) shifts to 1710 cm ⁻¹ in its acid chloride.				
D	The stretching of cyclopentanecarboxylic acid (1705 cm ⁻¹) shifts to 1790 cm ⁻¹ in its acid chloride.				

29.	Which of the foll	owing compound	ds will show "quintet" signal (five line), due to spin-spin coupling?
	0 > 0		
	I	II	III
	A. Only I	B. Only II	C. Only III D. I and II

30.	Which of the following compounds is used as a standard in H-NMR spectroscopy?				
	A . Me ₄ Si	B . Me ₄ C	C . Me ₂ O	D . D ₂ O	

31.	The relative rate of c	liffusion of a gas (1	molar mass= 128)	as compared to oxygen is			
	(a) 2 times	(b) 1/4	(c) 1/8	(d) 1/2			
32.	At what temperature will hydrogen molecules have the same kinetic energy per mole as						
	nitrogen molecules at 280 K?						
	(a) 280 K	(b) 40K	(c) 400 K	(d) 50 K			
33.	Which as the highest	boiling point?					
	(a) 0.1 M Na ₂ SC) ₄	(b) 0.1 M C_6	sH ₁₂ O ₆ (glucose)			
	(c) 0.1 M MgCl ₂		(d) 0.1 M Al	$(NO_3)_3$			
34.	The number of atoms per unit cell in a simple cubic, face centred cubic and body centred						
	cubic arrangement at (a) 8, 14, 9		(c) 1, 2, 4	(d) 4, 1, 2			
35.	At what angles for the	ne first order diffra	ction, spacing betw	veen two planes respectively are λ			
	and $\lambda/2$?						
	(a) 0°, 90°	(b) 90°, 0°	(c) 30° , 90°	(d) 90°, 30°			
36.	The ability of an ion to bring about coagulation of a given colloid depends on						
	(a) sign of the charge only (b) magnitude of charge only (c) both charge and magnitude (d) none of these						

37.	The rate of reaction, $A + B_2 \longrightarrow AB + B$ is directly proportional to the concentration of A and independent of concentration of B_2 , Hence, rate law is						
	(a) $k [A] B_2$ (b) $k [A]^2 [B_2]$	(c) k [A]	(d) $k[B_2]$				
38.	K _p / K _c for the reaction						
	$CO(g) + 1/2 O_2(g)$ $CO_2(g)$ will 1	be					
	(a)1 (b) \sqrt{RT}	$(c)\frac{1}{\sqrt{RT}}$	(d) RT				
39.	Rate constant of a first order reaction is 0.0693 min ⁻¹ . If we start with 20 mol/ L, it is						
	reduced to 2.5 mol/L in (a) 10 min (b) 20 min	(c) 30 min	(d) 40 min				
40.	The effect of a catalyst in a chemical reaction	n is to change the					
	1 ()	equilibrium conce Final product	ntration				
41.	If the enthalpy change for the transition of li the entropy of change for the process would (a) 1000 JK ⁻¹ mol ⁻¹ (b) 10 JK ⁻¹ mol ⁻¹	be					
42.	Select the correct statement	(0) 110 011 11101	(4) 011 011 11101				
	(a) Joule-Thomson effect is zero in an id	leal gas					
	(b) Joule-Thomson coefficient	(b) Joule-Thomson coefficient					
	$\mu_{J-T} = \frac{1}{C_P} \left[\frac{2a}{RT} - b \right]$ for a real gas	$\mu_{J-T} = \frac{1}{C_P} \left[\frac{2a}{RT} - b \right] $ for a real gas					
	(c) Both (a) and (b)						
	(d) None of the above	(d) None of the above					
43.	The efficiency of a Carnot's engine is 100%	when					
	(a) sink is placed at 0°C (b)	o) sink is placed at	0 K				
	(c) source is placed at 100 °C (d	l) source is placed	at 400 °C				
44.		The following mathematical expression is equal to $\left(\frac{\partial U}{\partial V}\right)_{S}$					
	(a) -Temperature	$OV/_S$					
	(b) -Pressure						
	(c) -Gibbs free energy (d) -Enthalpy						
45.	A system in equilibrium is described by the	gaseous phase equa	ation				
	Heat $+ SO_2Cl_2$	$SO_2 + Cl_2$	2				
	Which of the following statement is true?						
	(a) Addition of Cl ₂ will shift the equilibr	rium towards right	and temperature is raised				
	(b) Addition of Cl ₂ will shift the equilibrium towards left and temperature is raised						

(a) 0.16 V

(b) -0.179 V

- (c) Addition of Cl₂ and SO₂ will shift the equilibrium towards left and temperature is raised (d) Addition of Cl₂ and SO₂ will shift the equilibrium towards left and temperature is lowered 46. The following graph represent the conductometric titration of conductance Volume of Alkali added (a) Strong acid and strong base (b) Strong acid and weak base (c) Weak acid and strong base (d) Weak acid and weak base 47. A weak monoacid base has pH = 10 at 0.01 M. % ionisation of base is (a) 0.01 % (b) 0.001 % (c) 0.0001% (d) 1.0 % The standard reduction potentials of Cu²⁺/Cu and Cu⁺/Cu are 0.339V and 0.518 V, 48. respectively. The standard electrode potential of Cu²⁺/Cu⁺ half cell is
- 49. The chemical potential is partial molal quantity of thermodynamics parameter) (b) Helmholtz work function (a) Entropy (c) Gibbs free energy (d) Internal energy A saturated solution of sodium chloride is a **50.** (a) one phase system (b) two phase system (d) none of these (c) three phase system 51. Debye-Huckel theory predicts (a) Variation of velocity constant with temperature (b) Variation of equivalent conductance with concentration (c) Variation of equivalent constant with Pressure (d) None of the above Distribution law cannot be applicable for a system in which I₂ is distributed in between **52.** (a) Water and alcohol (b) water and benzene (c) water and chloroform (d) water and diethyl ether

(c) -0.16 V

(d) +0.179 V

53.	When the solid compound AB and the liquid phase have identical composition at the maximum point on the freezing point curve, the corresponding temperature is said to be						
	of the compound.						
	(a) eutectic point (b) Congruent Melting Point						
	(c) isotactic point (d) invariant point						
54.	In uranyl oxalate actinometer, the concentration of used upis a measure of the						
	intensity of radiation. (a) KMnO ₄ (b) uranyl oxalate (c) iodine (d) oxalic acid						
55.	Stark-Einstein law states about between reactant and product. (a) photochemical equivalence (b) photochemical equilibrium						
	(c) photochemical balance (d) photochemical reversibility						
56.	Which gas is adsorbed to the maximum extent on the given surface?						
30.	(a) NH_3 (b) H_2 (c) N_2 (d) O_2						
57.	Which of the following compounds shows both Frenkel and Schottky defects? (a) NaCl (b) AgCl (c) AgBr (d) KCl						
58.	Polymer obtained by condensation polymerization is (a) polyethene (b) Teflon (c) PVC (d) phenol-formaldehyde resin						
59.	(a) polyethene (b) Teflon (c) PVC (d) phenol-formaldehyde resin The maximum work a system can perform is equal to the decrease in						
	(a) Enthalpy change (ΔH) (b) Helmholtz work function change (ΔA)						
	(c) Gibbs free energy change (ΔG) (d) none of these						
60.	The salt bridge in the electrochemical cell serves to						
	(a) increase the rate at which equilibrium is attained(b) increase the voltage of the cell						
	(c) maintain electrical neutrality						
	(d) increase the oxidation/reduction rate						
61.	A titration of oxalic acid solution was performed with 0.01 N solution of KMnO ₄ . Of different activities given below, which one leads to a method error in the measurement:						
	(a) using uncalibrated burette(b) carrying out the titration at room temperature						
	(c) reading burette with lower meniscus						
	(d) rinsing the pipette with oxalic acid solution before use						
62.	Chemical oxygen demand for waste water can be expressed as:						
	(a) μ g / mL (b) mg / mL (c) ppt (d) μ g / L						
63.	A 0.1 M aqueous solution of sodium carbonate was prepared by weighing 1.06 g of						
	anhydrous material, dissolving it into about 70 mL of water and making up the volume to 100 mL. Standard solution of which of the following substances can be used to						
	standardize the prepared sodium carbonate solution?						
	(a) oxalic acid (b) succinic acid						
	(c) monosodium oxalate (d) potassium hydrogen phthalate						
64.	Among the following, identify the replicates in chemical analysis.						
	(a) ten students performed gravimetric determination of a solution of silver nitrate by precipitating silver chloride by pipetting 25 mL each of the given stock solution						

	 (b) one student determined hardness of three samples of water by performing one titration each of the three solutions with standard EDTA (c) one student standardized 100 mL of dilute sodium hydroxide solution by titrating 10 mL each of the solution three times with standard acid solution. (d) one student analyzed the given 10mL, 25 mL and 50 mL of ferric chloride solutions for gravimetric determination of iron 						
65.	In the solvent extraction of Fe(III) from 6 molar HCl solution containing 200 mg at pH 4.4, using oxine, a single extraction results into extraction of 100 mg of Fe(III), while at pH 6.4, about 5 mg of Fe(III) gets extracted. What is pH 4.4 called?						
	(a) pKa	(b) pKb	(c) $pH_{1/2}$	(d) $pH_{2/3}$			
66.	Which of the fo		inations cannot be	used for determination of pH of			
	` '	ilver chloride electrode hydrogen electrode wi		rogen electrode I hydrogen electrode through salt			
	(c) standard	hydrogen electrode wi lectrode coupled with a					
67.	Which of the fo	llowing conditions is tr	ue when there in no	o weight loss in a DTG curve?			
		_		d) dW/dt < 1			
68.			<u> </u>	n UV-Visible spectra is g transitions would give most			
	(a) d-d transition	1	(b) n-π* tran	sition			
	(c) donor HOM	O to acceptor LUMO	(d) f-f transit	tion			
69.	Which of the fo	llowing is not a suitable	e technique for assa	ay of sodium and potassium in			
	(a) AAS (b) F	AES (c) ICP-AES (d	d) IR				
70.	Pick up odd one	from the following:					
	(a) Photomultip	lier tube (b) Bolomete	r (c) Thermoc	ouple (d) DTGS detector			

71.	Which quantum number is related to the energy, shape and the number of angular no of / in an atomic orbital?						
			(c) m	(d) s			
72.	The number of radial nodes in 5p orbitals is						
	(a) 4	(b) 3	(c) 2	(d) 1			
73.	Mercury, though metal, is liquid at normal temperatures because of its (a) low cohesive energy (b) low atomic number (c) low heat of dissociation (d) All of a, b, c						
74.	$\label{eq:localization} \begin{tabular}{ll} Identify the series with correct order of stability of the complexes. \\ (a) $[Cu(en)_2]Cl_2 > [Cu(en)_2](NO_3)_2 > [Cu(en)_2]SO_4$. \\ (b) $[Cu(tren)]Cl_2 > [Cu(en)_2]Cl_2 > [Cu(NH_3)_4]Cl_2$. \\ (c) $[Ag(NH_3)_4]Cl > [Au(NH_3)_4]Cl > [Cu(NH_3)_4]Cl_2$. \\ \end{tabular}$						
	(d) $[Cr(en)_2]Cl_2 > [Cu(en)_2]Cl_2 > [Zn(en)_2]Cl_2$.						
	[en = ethyle	ne diamine	, tren =trieth	ylene tetraami	ne]		
75.	Which of th	e following	transition n	netal ions unde	ergoes Jahn-Teller distortion?		
	(a) Cr ²⁺	(b)	Cr^{3+}	(c) Cr ⁶⁺	(d) Co ³⁺		
76.	Alpha-grapl	nite and bet	a-graphite h	ave			
	(b) Diffe (c) Hexa	erent hybrid agonal strud	lization of C cture		rent chemical properties lifferent chemical properties		
77.	Beryl and E	merald, res	spectively, a	re examples of	f		
	(b) Shee (c) cycl	ic silicate a	cates, and orthosiliond and disilicate asheet silica				
78.	Which of th	e following	hydroxides	is basic in cha	racter?		
	(a) Be(0	$OH)_2$ (1	b) B(OH) ₃	(c) Al(OH)	3 (d) TlOH		

79.	The anion, S ₂ O ₄ ²⁻ is named as							
	(a) Thiosulphate (b) dithionate (c) dithionite (d) tetrathionate							
80.	Which of the following is the most acidic? (Hint: Consider the dissociation of the first proton in case of more than one H present) (a) H ₄ P ₂ O ₇ (b) H ₃ PO ₃ (c) H ₃ PO ₄ (d) H ₂ PO ₄ ⁻							
81.	The hybridization of Cl atom orbitals in ClF ₃ and its shape are, respectively, (a) sp ² , trigonal planar (b) sp ³ , trigonal pyramidal (c) dsp ³ , trigonal planar (d) dsp ³ , bent T							
82.	The hydrophobicity of silicones is due to the presence of (a) Si-O-Si framework (b) Si-O-R groups (c) Si-R groups (d) Si-OH groups at the exterior							
83.	Doping of Indium in Silicon results in the (a) formation of an n-type semiconductor (b) addition of a conduction band with lower energy than that in Si (c) addition of a valence band (d) increase in the band gap							
84.	Given below is Frost diagram of an element. What does it indicate about the stability of various oxidation states of the element? 6 5 4 3 2 1 0 0 2 3 4 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							

85.	Which of the following 2 reactions are possible?							
	i. $2\text{FeCl}_3 + \text{SnCl}_2 \rightarrow 2\text{FeCl}_2 + \text{SnCl}_4$							
	ii. $2\text{FeCl}_2 + \text{SnCl}_4 \rightarrow 2\text{FeCl}_3 + \text{SnCl}_2$							
	iii. $PbCl_2 + SnCl_4 \rightarrow SnCl_2 + PbCl_4$							
	iv. $SnCl_2 + PbCl_4 \rightarrow PbCl_2 + SnCl_4$							
	(a) i and ii (b) i and iii (c) i and iv (d) ii and iv							
86.	Oxidation of ferrous ion by Ce ⁴⁺ and KMnO ₄ is attempted in separate reactions. The							
	following is expected to happen.							
	(a) Ce ⁴⁺ is not a good oxidizing agent and hence, will not oxidize Fe ²⁺ quantitatively.							
	(b) KMnO ₄ is a stronger oxidizing agent with Mn in +7 oxidation state and hence the reaction with KMnO ₄ will be faster.							
	(c) Both are strong oxidizing agents and hence both reactions will be equally fast.							
	(d) The reaction with Ce ⁴⁺ is a complementary reaction while that with KMnO ₄ is							
	non-complementary. Hence, the reaction with Ce ⁴⁺ will be faster.							
	men comprenentation, and restored with earlier							
87.	The product formed in the reaction where 3 Cl ⁻ ligands in [PtCl ₄] ²⁻ are successively							
	substituted by one each of NH ₃ , NO ₂ ⁻ and py (= pyridine) in the same order is							
	(a) Trans- $[Pt < py(NH_3) > < Cl(NO_2) >]$							
	(b) Trans- $[Pt < Cl(NH_3) > < py(NO_2) >]$							
	(c) Trans-[Pt $<$ Cl(py) $><$ (NH ₃)(NO ₂) $>$]							
	(d) Trans-[Pt $Cl_2(NH_3)(py)$]							
00	The enterior 1 and 1 and 1 and 1 at 4 at 2 and 2 at 5 at 1 and 2 at 2 a							
88.	The entropy change during a ligand substitution reaction following A mechanism is							
	(a) Positive (b) Negtive (c) Zero (d) Either positive or negative							
89.	Which of the following can behave as a reducing agent?							
	() F (5 G H)(GO)							
	(a) $Fe(\eta^5 - C_5H_5)(CO)_3$							
	(b) $Mn(\eta^5-C_5H_5)(CO)_3$							
	(c) $Cr(\eta^5 - C_5H_5)(CO)_3$							
	(d) $Co(\eta^5 - C_5H_5)(CO)_2$							
00								
90.	A mixture of aqueous ZnCl ₂ and AlCl ₃ is treated with excess of concentrated sodium							
	hydroxide solution. The result should be the formation of							
	(a) Zn(OH) ₂ precipitate							
	(b) Al(OH) ₃ precipitate							
	(c) Both Zn(OH) ₂ and Al(OH) ₃ precipitates							
	(d) Clear solution							
91.	Metals A and B have same valence electron configuration and similar radii. Metal A							
	crystallizes in HCP lattice while metal B forms a BCC lattice.							
	(a) Metals A and B can form a superlattice							
	(b) Metals A and B can form an interstitial alloy							
	(c) Metals A and B can form a random substitution alloy over a limited range of							
	composition							
	(d) They can not form any alloy							

92.	Which of the following statements is true about iron and its alloys?							
72.								
	(a) Cast iron is softer than pure iron							
	(b) Steel is a substitutional alloy(c) The hardness of steel is due to the occupation of interstitial sites(d) Steel is harder than cast iron							
	(a) steel is harder than east non							
93.	The lanthanide ions having a stable oxidation state other than +3 are							
	(a) La, Gd (b) Er, Lu (c) Gd, Lu (d) Eu, Yb							
94.	Which of the following isotopes are fissile but artificially produced?							
	(a) 238 U, 239 Pu (b) 233 U, 238 U (c) 235 U, 238 U (d) 233 U, 239 Pu							
95.	Which of the following metal ions are involved at the active site of nitrogenase enzyme?							
	(a) Zn, Cu (b) Mg, Fe (c) Fe, Mo (d) Mn, Co							
96.	Which of the following is Wilkinson's catalyst?							
	(a) $[IrCO(PPh_3)_3]$ (b) $[RhCl(PPh_3)_3]$ (c) $Co_2(CO)_8$ (d) $RuCl_2(PPh_3)_4]$							
97.	A sulphide ore is generally roasted to the oxide before reduction because (a) Enthalpy of formation of CO ₂ is highly negative while that of CS ₂ is positive (b) Motel cylindrical and controlled the controlled th							
	(b) Metal sulphides are generally more stable than metal oxides(c) Sulphide ores can not be reduced at all							
	(d) No reducing agent is found suitable for a sulphide ore							
98.	Which of the following metals is the strongest reducing agent?							
	(a) Cs (b) Ce (c) Cu (d) Cr							
99.	The point symmetry of thiosulphate anion is							
	(a) C_1 (b) C_{2V} (c) C_{3V} (d) T_d							
	(a) C1 (b) C2v (c) C3v (d) 14							
100.	Aqueous ammonia is added to an aqueous solution containing chlorides of Ag ⁺ , Al ³⁺ , Fe ³⁺ ,							
	Cu^{2+} and Ni^{2+} to attain pH ≈ 10 and the solution filtered. Which of these ions will go in							
	solution in complexed form?							
	(a) Ag^+ , Al^{3+} , Fe^{3+}							
	(b) Cu^{2+} , Ni^{2+} , Ag^{+}							
	(c) Al^{3+} , Fe^{3+} , Cu^{2+}							
	(d) Fe ³⁺ , Cu ²⁺ , Ni ²⁺							